Showing posts with label 4G. Show all posts
Showing posts with label 4G. Show all posts

Tuesday, 28 May 2024

Measuring value and royalty costs in standards and SEPs passed along the value chain to consumers

An economist in the audience asked my panel on “transparency” at the Patents in Telecoms and the Internet of Things conference in London recently about achieving this by demanding detailed company financial disclosures. This is my first of two articles on topics in my wheelhouse that were addressed at this superlative biennial event. 

Rough judgments

Companies are generally unwilling to reveal such accounting figures that would help show how royalty costs are passed on and where profits are generated. Furthermore, some major value transfers are non-monetary and would not show up in these measures. Nevertheless, it is possible to surmise where most economic value is generated, captured or passed through, and where royalty costs are passed on in supply chains to customers.

Aggregate royalties paid of around five percent of handset revenues are very modest in comparison to total value in standards and the consumer welfare derived by several billion people using devices such as smartphones for many useful purposes.

Most of the value created in technology standards such as 4G and 5G is passed through to consumers. How much and where the rest of it is harvested across the supply chain and in the broader ecosystem is more complex and subtle.

Royalties paid and passed on can have a significant bearing on the financial performance of individual companies where competitors are paying and absorbing different amounts.

My analysis here includes some unashamedly qualitative assessments, as well as my usual quantitative support. But first, some definitions and background.

Economic pie sharing

Economists describe value created, for example, from technology innovation, as a total “surplus” that’s divided between producers and consumers. Producer surplus is obtained where the price received is higher than the minimum at which the producer is willing to sell. Consumer surplus is where the price paid is lower than the maximum the consumer is willing to pay. However, in the real world, it’s more complicated than this binary split with various different players in the ecosystem benefiting from standards such as 4G and 5G including standard-essential patents (SEPs).

Those who derive value from standards including SEPs, and share the total surplus include patent licensors, device OEMs, device ODMs (i.e. contract manufacturers), network equipment OEMs,  MNOs and MVNOs (i.e. physical and virtual mobile network operators), Big Tech Internet platforms and software publishers as well as end-users. Suppliers that generate no more than their cost of capital might be regarded as not capturing surplus, but superior returns and deficient returns can be generated in various ways. Reasons that possibly explain weak or strong profitability include (in)efficiency and other business activities. For example, Apple is by far the most profitable smartphone OEM and has accounted for between 70 percent and 80 percent of total handset profits over many years because it has a lot going for it. It is a more specific empirical question to what extent its superior returns result from it paying less than economic value or harvesting surplus in other ways in use of the cellular standards including SEPs.

Upstream creation, downstream consumption

Communications standards such as 4G and 5G are enormously valuable overall. This is resoundingly indicated by more than five billion mobile phone users (i.e. unique subscribers) and with rapid uptake of new standards. In addition to using mobile devices for calling and text messaging, with the vast majority of devices now being smartphones these are the primary or only means of accessing the Internet for most of these people. For a large and increasing proportion of them, these devices are also the dominant means of receiving news, sharing photos, paying for purchases, navigating and even watching video.

Some of the surplus created by standard-technology developers is retained or used to subsidize product business in network equipment or devices; but most of it flows to consumers within a few years of new technologies becoming commercially available. In between, a few major OEMs are likely retaining significant surplus. However; most OEMs and ODMs that are paying their dues in patent licensing fees are probably not keeping much of the surplus at all. Various Over-The-Top (OTT) players are taking significant value indirectly—in competition with MNOs and in information exchange barter trading with consumers, as explained below.

Fruits of competition and dominance

Vigorous competition bringing innovation and rapidly-declining quality-adjusted prices has delivered exceptional growth in new higher-performance services and network traffic growth. By the mid-2000s, unsubsidized new mobile phones could be purchased in most nations for under $50 and for as little as $20 in developing nations. By 2010, around half the world’s population had a mobile phone. Now, for example, there are plenty of 4G Android smartphone models on sale in India in the price range of RS5,000 to RS10,000 ($55 to $110) that include at least 4GB of RAM, front and rear cameras and 6 inch or larger displays that can stream video and deliver location-based services. Consumer surplus is clearly high in use of these, despite the relatively low willingness or ability to pay much higher prices in nations with modest income-per-capita such as India.

Meanwhile, the prices of high-end smartphones have increased. For example, many consumers happily pay more than $1,000 for various iPhone and Android models. Apple thus appears to be deriving significant producer surplus. While much of that arises from its strong brand, favored designs and manufacturing cost control, it also seems likely that a significant proportion of that is from standards-based technologies, after its payment of SEP royalties. It’s notable from recent FRAND decisions in the UK (i.e. in Interdigital v. Lenovo and Optis v. Apple) that large OEMs—such as Apple, Samsung, Xiaomi and Huawei—paying royalties in large lump sums up-front spend relatively low amounts per unit, and as percentages of unit selling prices, in comparison to many smaller OEMs paying running royalties. The larger OEMs are evidently receiving deep discounts of up to 80% for volume and prepayment.

In comparison to Apple and Samsung, most handset OEMs are in a rather more commoditized (i.e. less product-differentiated) and price-competitive market segment. Marginal costs also tend to be passed on to customers in the latter, but with little scope to increase prices much above costs no matter what goodies become available (to all) in the standards. The contract manufacturer ODMs also operate on thin margins. While owing their existence to the new technologies that fuel handset market growth and replacement, most manufacturers do not appear to be making exceptional profits in doing so.

Even some major OEMs have failed financially in the face of competition, regardless of ever-improving and increasingly valuable standards. It’s notable that despite Nokia being the handset market leader commanding the vast majority of the sector’s profits in the 2000s, and with peak financial performance around 2008, the firm’s floundering smartphone business at the beginnings of the 4G era was divested to Microsoft in 2014 and then subsequently closed with declining sales a couple of years later. With LG’s market share falling from 9% to 2% during the 2010s, it stopped selling smartphones in 2021.

All being things equal, one would expect costs including royalties to be fully passed on by suppliers in their prices. One would also expect that prices could be elevated little more—despite standard-technologies creating more total surplus than is paid for them in royalties—due to fierce downstream price competition among OEMs. Given the many competing suppliers at the commodity end of the market, one way a supplier might retain substantial supplier surplus would be if that company was avoiding royalty payments (e.g. through hold-out) while its competitors were incurring those costs and passing them on to customers. Alternatively, if that supplier was the only one, or if few are, paying such royalties, it might be unable to fully pass-on such costs to its customers without diminishing its sales volumes and market share.

Quid pro quos

MNOs and MVNOs do not pay directly to use the standards or SEP technologies that have kept them competitive in generating their service revenues. Instead, MNOs pay for new standards-based technologies in their network equipment purchases that are licensed with payment of patent fees by the manufacturers. MNOs and MVNOs commonly subsidize consumer purchases of new handsets that also employ these manufacturer-licensed technologies.

The fortunes of MNOs worldwide vary significantly: however, with a few exceptions such as US market leaders AT&T, Verizon and T-Mobile in recent years, profitability is generally modest or meagre. For example, Vodafone and 3 in the UK are hoping their proposed merger will improve lacklustre financial performance in competition with two other MNOs.

While some MNOs may have been able to capture some of the economic surplus in 4G and 5G, it seems that the MNOs and MVNOs overall are not major hoarders of surplus. Instead, consumers benefit, for example, by getting more and more data for around the same expenditure as for much less data previously. While global MNO revenues have been rather flat over many recent years, MNOs are supplying exponential network traffic growth of 1,000x over fifteen years since 2010. Fierce competition among operators is causing all the cost-per-gigabyte reductions and increased value MNOs receive from technological improvements to be passed through downstream to consumers with an unrewardingly constant unitary elasticity in the market demand curve.

In contrast, Big Tech Internet platforms are making money hand over fist in comparison to most MNOs, even though surging mobile data now accounts for almost 60% of all Internet traffic. Google (Android, Google Play Store, YouTube), Meta (Facebook, Instagram, WhatsApp) and Apple (iOS and App Store) are indirectly appropriating some of the surplus generated by standards and SEPs. For example, as WhatsApp is free for end-users, it cannibalizes the higher profits mobile operators could otherwise make on picture messaging, international calls and roaming calls. Even though consumers pay for mobile data so they can use this app, MNOs’ supplier surplus is diminished by these substitution effects. And, there’s is no free lunch for consumers: the Faustian bargain in using WhatsApp is in allowing Meta to access personal phone contact information. Consumer surplus is thus diminished and Meta’s supplier surplus is increased by this payment made in-kind.

Big Tech is also taking significant slices of the surplus from OEMs. For example, when you browser search or ask Siri for an Internet search on your iPhone it uses Google’s search engine. Payments by Google to Apple, to be the default search engine on iPhones, reportedly accounts for 14 to 21 per cent of Apple’s profits.  Payments were expected to be between $18 billion and $20 billion annually by 2021. That’s not all economic surplus from the value of communications standards and SEPs, but a significant proportion of it surely is given that Google, like Meta, also harvests value from consumers’ personal information including use—such as location—of mobile devices.

And, what about the SEP licensors who also develop the standards in the first place? Some of them are probably obtaining some producer surplus and using it to support their complementary product businesses in communications processor chips, network equipment and devices. Nevertheless, with aggregate royalties paid only around five percent of handset revenues, a much lower percentage when also including MNO and mobile OTT revenues and declining over the last decade, the remaining surplus passed through downstream in a vibrant and innovative ecosystem where almost everyone now is a major consumer is much, much more.


Keith Mallinson, founder of WiseHarbor, has more than 25 years of experience in the telecommunications industry as a research analyst, consultant and testifying expert witness.


Monday, 12 October 2020

Right-pricing cellular patent licensing in 4G and 5G connected vehicles

Bountiful connectivity apps in vehicles

While litigation is bogging down the licensing of cellular standard essential patents (SEPs) in vehicles with disputes about where in the production supply chain licensing may or must occur—from chip, to module, to telematic control unit (TCU), to entire vehicle—this is also delaying payment of Fair, Reasonable and Non-Discriminatory (FRAND) royalty charges in these cases and causing confusion about licensing value. This is a pity because clarity is in everyone’s urgent interest.

Well-established mobile phone licensing benchmarks conservatively imply a total value of at least around $30 per vehicle for patents essential to the 2G, 3G and 4G standards.

Great expectations for IoT hinge on cellular technology

There is strong consensus and enthusiasm in government, business and among commentators about the Internet of Things, with its multi-trillion dollar market potential. While financial and other benefits will be reaped by many vendors and users in various different industries, as well as by consumers, several generations of patented technologies developed largely by companies within the telecommunications industry over many years—up to and including newly introduced 5G—are enabling this major opportunity.

Despite cellular technologies being developed by and hitherto implemented largely among a relatively limited group of telecommunications industry OEMs producing cellular products—most significantly mobile phones as well as mobile network equipment—the variety and numbers of prospective technology implementers in IoT are far greater. While SEP licensing is well established for mobile phones and base stations—with thousands of agreements since the 1990s worth many billions of dollars every year—the industry is still in the throes of establishing the basis and pricing for use of these technologies in various different IoT applications including cars, domestic appliances, industrial robots and remote meters.

This article conservatively estimates total FRAND charges for licensing all cellular SEPs in vehicles, based on value derived therefrom and reflecting some recent court judgements on FRAND charges in other devices including smartphones. 

How to charge?

Since the early days of the 2G mobile phone industry, SEP owners most often licensed their cellular patents at royalty rates calculated as a percentage of phones’ average wholesale (i.e. unsubsidized) selling prices. One reason for this is that OEMs anticipated the subsequent downward trend in mobile phone prices, which fell dramatically following the introduction of digital cellular with 2G in the early 1990s. OEMs did not want to be locked into fixed dollar-per-unit (“DPU”) royalty charges that would increase in percentage terms as manufacturing costs were rapidly declining.

While royalties for 2G/3G/4G cellular connectivity in a mobile phone have usually continued to be charged as a percentage of the end-product selling price, the value established there—when stated as an equivalent DPU figure—is a key consideration. As average mobile phone prices increased with the widespread adoption of 3G smartphones from the late 2000s and 4G smartphones several years later, SEP licensors have, in many cases, at the behest of OEMs, “capped” percentage-based royalties to maximum DPU figures to ensure royalties paid do not exceed the value of additional features deemed less dependent on cellular connectivity. 

Similarly, DPU pricing is also applicable for other cellular-enabled “devices” including, for example, PCs and connected vehicles. There are also bountiful ways in which connectivity is exploited in these with various applications. However, a vehicle OEM, for example, would quite reasonably refuse to pay royalties for cellular SEPs that are calculated as a percentage of a vehicle’s cost or value in alloy wheels or leather seats. 

I have argued for many years against the proffered valuation methodology of basing royalties on a percentage of the sales price of a component or “smallest-saleable patent practicing unit (SSPPU)” and this approach has been soundly rejected by US and European courts.  The US Ninth Circuit Court of Appeals has ruled in Federal Trade Commission v. Qualcomm that “the district court’s analysis [relying on an SSPPU approach]is still fundamentally flawed. No court has held that the SSPPU concept is a per se rule for “reasonable royalty” calculations . . . .” Similarly, in Germany in Nokia v Daimler, the Mannheim court stated that the “royalty provided in [Daimler’s] counter-offer is not reasonable, as the reference value used in the top-down approach in the form of the average purchase price of [TCUs] is unsuitable. This reference value prevents [Nokia] from participating adequately . . . in use of the technology in the saleable end product.” (Unofficial translation.)

I am not commenting here on how aggregate royalties can or should be apportioned among SEP owners. Elsewhere, I have commented on the inaccuracies and other shortcoming in apportioning royalties based on the counts of declared-essential or judged-essential patents

Where to license?

While I and many others have also long argued it is also rather simpler and more efficient to license at the entire device level—as has always been the case in mobile phones—the Court of Appeals additionally ruled in the above that it is the patent licensor’s prerogative to license where it wishes. 

As discussed below, the value of cellular functionality to a connected vehicle is at least around $30 per unit, regardless of where licensing occurs in the production supply chain, and irrespective of the different formulae that could be used to calculate that figure with licensing at different stages in that supply chain. 

Valuation benchmarks

While there has never been consensus in the telecommunications industry that aggregate royalties for SEPs should be capped—with significant dissent by various licensors including Qualcomm—maximum aggregate figures proposed by some leading companies that declare many patents essential to cellular standards—when correctly interpreted and applied—provide at least some conservative valuation benchmarks. Court determinations of FRAND royalty rates for individual licensors—also as percentages of unsubsidized wholesale handset prices—in a few different cases have been based upon or cross-checked using such aggregate figures:

However, adjustments to the above are warranted because some source figures have been misinterpreted and incorrectly applied or alternative figures could have been reasonably selected as aggregate royalties in determining FRAND rates for the parties’ portfolios. 

Prior to Judge Selna’s judgement being entirely vacated on appeal, I showed he had muddled single-mode and multi-mode licensing rates in pages 5 to 7 of my critique of his “top-down” SEP royalty rate valuation analysis. As LTE was being first standardized in 2008, patent owner announcements from April that year proposed individual and aggregate single-mode LTE royalty rates. This was for like-for-like comparisons with claims of ”less onerous” licensing for rival 4G technology WiMAX at “much lower” rates and with patent pooling at a “predictable cost”. Only a couple of companies also mentioned their proposed multi-mode rates. It is only since then that Apple’s iPhones and Android-based smartphones have been multi-mode devices needing licensing of more than one generation of technology. The first of these smartphones, including even 3G, was not introduced until the second half of 2008. The aggregate rates Judge Selna used in deriving an aggregate FRAND rate of 6% to 8% (his judgement also cites a figure “not higher than 10%”), reflected only the value in LTE and not that in 2G and 3G. The correct figure for LTE handsets (i.e. multimode devices) with his methodology should, therefore, have been 11% to 15%, including an additional 5% for 3G, and conceivably more for the inclusion of 2G. 

Justice Birss also uses the “total royalty burden” in his FRAND rate determinations. He indicates, for a 4G multimode handset, “the aggregate implied by either party’s case (Huawei’s 13.3% and Unwired Planet’s 10.4%).” The average of these two figures is 11.9%. 

According to Strategy Analytics, the global wholesale average selling prices for LTE handsets (i.e. overwhelmingly multi-mode including 2G, 3G and 4G standards) were $270 in both 2018 and 2019. That equates to $29.70 to $40.50 per handset at multi-mode royalty rates of 11% and 15%, respectively.

While cellular SEP licensing revenues for Ericsson, InterDigital, Nokia and Qualcomm alone amount to many billions of dollars per year, that is overwhelmingly from mobile phone licensing with revenues understating value in cross licensing among these and other companies. For example, as Ericsson and Nokia used to have large handset device operations and still have major cellular network equipment businesses, licensing fees paid in cash among those and many other cellular industry companies significantly reflect netting off rather higher nominal charges. Major implementers—including Apple, Huawei, LG and Samsung with substantial market shares of device sales in recent years—tend to generate little or nothing in cash royalties for SEP licensing while they seek to minimize license fee outpayments through cross licensing. 

Licensing fees paid also understate value because many OEMs have remained unlicensed due to free-riding with patent “hold-out” and because some OEMs do not have licensing programs but own patents for defensive purposes. 

SEP value in vehicles versus smartphones

The value of SEP technology to vehicles is provided in various ways and applications to manufacturers, consumers and vehicle fleet operators. In some respects, this value exceeds the value that the same technology confers on a smartphones. As well as enabling in-vehicle information and entertainment systems, cellular technology:

  • Connects all of a car’s occupants concurrently, while smartphones tend to be used by only one person;
  • Enables remote vehicle diagnostics for maintenance, asset management tracking and route management in trucks; 
  • Improves vehicle safety with C-V2X, for example, with collision avoidance alerts introduced in 4G: thus saving lives by reducing the numbers of millions dying and many more suffering from serious accidents on the roads worldwide each year; and
  • Can continuously connect various third parties, including the vehicle OEM, insurance providers and fleet management service providers.

The value derived from the one-off licensing charges is also elevated in connected vehicles because these have longer working lives than smartphones.  Cars, for example, typically have 14-year lifespans before scrappageversus seven years for mobile phones, while users in developed countries replace their phones about every 18 months.

The DPU value of cellular SEPs in vehicles is, therefore, at least comparable to that in smartphones.

Even more than a big smartphone on wheels
While there will continue to be a large proportion of costs and value in vehicles that has nothing to do with cellular capabilities, the proportion of that in information and communications technologies—significantly including cellular connectivity—is large and growing rapidly. As defined by industry analyst Markets and Markets, the global connected car market is expected to be worth $54 billion in 2020 and is projected to reach $166 billion by 2025—a compound annual growth rate of 25%. With sales of around 70 million light vehicles per yearthat amounts to $600 per vehicle in 2020 rising to $2,400 per vehicle in 2025. It believes the connected truck market is also worth tens of billions of dollars per year. In addition, Markets and Markets circumscribes a separate global in-vehicle infotainment market which it projects to grow from $24.3 billion in 2019 to $54.8 billion by 2027—a compound annual growth rate of 10.7%.  Research shows that car manufacturers charge consumers from several hundred dollars to many thousands of dollars for connected car application “packages.”


In consideration of all the above and the “maximum aggregate rates” relied upon by the judges, as discussed above, an aggregate SEP value of $30 to $40 per smartphones is also reasonably applicable per connected vehicle for multimode 2G/3G/4G licensing. While DPU royalties are explicitly not derived as a percentage of a vehicle’s cost or price, it is notably that the above figures correspond to less than 0.1 % of 
average selling prices for cars—at $37,800 in the US and $27,400 globally— two orders of magnitude higher than for LTE smartphones at $270 over the last couple of years. 

The future in 5G

As indicated above, the connected car market is expected to quadruple in size over the next five years, with additional growth in adjacent markets that are also dependent on cellular connectivity. As well as buoying average prices and stimulating new vehicle sales volumes, connected vehicle capabilities in cars and trucks—with Markets and Markets’ market definition, or with my broader market definition—will inevitably provide among the best opportunities for vehicle OEMs to differentiate their products and bolster profit margins. For example, capabilities including C-V2X are being enhanced in 5G over what is possible in 4G, with improvements such as enhanced positioning to enable increasingly autonomous and even self-driving vehicles. While market definitions include the cost or price of tech hardware and software, utility and value to consumers will grow as autonomous capabilities—provided by C-V2X, sensors and AI—save lives while relieving occupants from driving and enabling them to work, relax or sleep. 

While cost and value to manufacturers and consumers in connected vehicles is almost entirely still in 2G, 3G and 4G today, this will increasingly be in 5G with it expecting to dominate the flow of gross additional cellular connections (a leading indicator) and account for 31 percent of all established connections worldwide by 2025. That justifies significant additional royalties for 5G in vehicles, as some cellular SEP owners are already obtaining through the licensing of 5G smartphones and other devices.

One-stop-shopping is best in IoT

While bilateral licensing is possible in IoT including connected vehicles—as it is in mobile phones—the reduced transaction costs and other benefits inherent in platform-based licensing or patent pooling is highly attractive to both licensors and licensees in IoT, as I wrote in my previous article here very recently. While all the major cellular SEP owners have preferred to license bilaterally to the relatively small number of handset OEMs, most prefer now to license these SEPs into the numerous different vertical sectors in IoT through a platform or pool. For example, while there are differences in analysis and opinion about exactly what proportion of cellular SEPs Avanci represents, there is broad agreement that it, with its 39 licensors, has most of them. Avanci licenses all its 3G and 4G SEPs for $15 per connected vehicle—the price of a car wash—regardless of how many TCUs, modules or modem chips the vehicle contains.

———————————————————————————————————————————————

A similar article to this was originally published in RCR Wireless.

Keith Mallinson is a leading industry analyst, commercial consultant and testifying expert witness. Solving business problems in wireless and mobile communications, he founded consulting firm WiseHarbor in 2007.